Kumeo Implementation Roadmap
This document outlines the step-by-step approach to implementing the Kumeo platform, from initial design to production deployment.
Phase 1: Foundation (Months 1-2)
1.1 DSL Design
- Define core syntax and grammar
- Design type system for agent interactions
- Create formal language specification
- Develop parser using LALRPOP or similar tool
- Implement abstract syntax tree (AST) representation
1.2 Compiler Foundation
- Set up compiler project structure
- Implement lexer and parser
- Develop semantic validation
- Create initial symbol table management
- Define intermediate representation (IR)
1.3 Runtime Foundations
- Define runtime core APIs
- Implement basic event handling
- Create agent abstraction layer
- Set up NATS client integration
- Develop simple workflow executor
- Add Python runtime support
- BaseAgent implementation
- RuntimeClient for Python
- Message serialization/deserialization
- Lifecycle management
- Error handling and recovery
Phase 2: Core Implementation (Months 3-5)
2.1 Compiler Development
- Implement multi-language code generation
- Rust generation for LLM agents and basic operations
- Python generation for ML models and Bayesian networks
- Template system for code generation
- Inter-language communication layer
- Add type checking and validation
- Create Kubernetes manifest generator
- Implement optimization passes
- Add support for context variables
2.2 Agent Implementation
- Develop LLM agent interface
- OpenAI integration
- Ollama integration
- Implement ML model agent
- ONNX runtime support
- Scikit-learn model loading
- Create Bayesian network agent
- Implement decision matrix agent
- Develop human-in-the-loop agent
2.3 Runtime Enhancement
- Implement error handling and retry mechanisms
- Add monitoring and logging
- Create deployment pipelines
- Develop configuration management
- Implement security features
Phase 3: Advanced Features (Months 6-8)
3.1 DSL Extensions
- Add subworkflow support
- Implement conditional execution
- Create parallel processing constructs
- Add dynamic agent configuration
- Develop error handling patterns
3.2 Runtime Enhancements
- Implement state persistence
- Add distributed tracing
- Create advanced monitoring
- Implement performance optimizations
- Add resource management
3.3 Kubernetes Integration
- Develop custom resource definitions (CRDs)
- Create Kubernetes operators
- Implement auto-scaling
- Add high-availability features
- Develop multi-cluster support
Phase 4: UI and User Experience (Months 9-10)
4.1 Visual Editor
- Design UI wireframes and prototypes
- Implement workflow canvas
- Create agent configuration panels
- Develop property editors
- Add validation and feedback
4.2 Monitoring Dashboard
- Design monitoring UI
- Implement real-time updates
- Create visualization components
- Add filtering and search
- Develop alerting configuration
4.3 Documentation
- Create comprehensive API documentation
- Write user guides
- Develop tutorials and examples
- Create video walkthroughs
- Implement interactive documentation
Phase 5: Testing and Refinement (Months 11-12)
5.1 Testing Infrastructure
- Develop unit test framework
- Create integration test suite
- Implement end-to-end testing
- Add performance benchmarks
- Create stress testing tools
5.2 Example Workflows
- Develop fraud detection example
- Create customer service bot
- Implement data processing pipeline
- Add content generation workflow
- Create decision support system
5.3 Beta Program
- Recruit beta testers
- Gather and implement feedback
- Fix bugs and issues
- Improve documentation
- Refine user experience
Phase 6: Production Release (Month 12+)
6.1 Launch Preparation
- Finalize documentation
- Complete all testing
- Prepare marketing materials
- Create release notes
- Plan support infrastructure
6.2 Initial Release
- Deploy production environment
- Release v1.0
- Monitor adoption and usage
- Provide initial support
- Gather feedback for future iterations
6.3 Ongoing Development
- Plan v1.1 features
- Prioritize community feedback
- Expand agent ecosystem
- Improve performance
- Add enterprise features
Technical Implementation Details
DSL Grammar Development
workflow ::= 'workflow' IDENTIFIER '{' workflow_body '}'
workflow_body ::= source target context? agents
source ::= 'source:' source_def
source_def ::= NATS_SOURCE | HTTP_SOURCE | ...
Compiler Pipeline
- Parsing:
.kumeo
files → Parse Tree - AST Construction: Parse Tree → AST
- Semantic Analysis: AST + Symbol Tables → Validated AST
- Optimization: Validated AST → Optimized AST
- Code Generation: Optimized AST → Rust code + K8s YAML
Runtime Architecture
┌─────────────┐
│ API Gateway │
└──────┬──────┘
│
┌─────────┐ ┌──────▼──────┐
│ Agents │◀─────────┤ Workflow │
└─────────┘ │ Engine │
▲ └──────┬──────┘
│ │
│ ┌──────▼──────┐
└───────────────┤ Event Router │
└──────┬──────┘
│
┌──────▼──────┐
│ NATS │
└─────────────┘
Risk Assessment and Mitigation
Risk | Impact | Likelihood | Mitigation |
---|---|---|---|
Complex language design creates adoption barriers | High | Medium | Focus on simplicity, provide examples and templates |
Runtime performance issues | High | Medium | Early performance testing, optimization passes |
Integration challenges with external models | Medium | High | Develop robust adapter patterns and fallbacks |
Kubernetes complexity | Medium | Medium | Abstract deployment details, provide managed options |
Security vulnerabilities | High | Low | Regular security audits, principle of least privilege |
Resource Requirements
Development Team
- 2 Rust developers (compiler, runtime)
- 1 Frontend developer (UI)
- 1 DevOps engineer (Kubernetes, NATS)
- 1 Technical writer (documentation)
Infrastructure
- Development environment
- CI/CD pipeline
- Testing infrastructure
- Demo environment
- Documentation hosting
Success Metrics
- Compiler successfully generates valid Rust code for 95% of test cases
- Runtime handles at least 1,000 events per second per node
- UI enables workflow creation in under 10 minutes for new users
- At least 10 example workflows demonstrating different use cases
- Documentation covers 100% of public APIs and features
Conclusion
This implementation roadmap provides a structured approach to building the Kumeo platform over approximately 12 months. The phased approach allows for incremental development and testing, with clear milestones and deliverables at each stage.